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Abstract. We consider a general N -degrees-of-freedom nonlinear system which is chaotic and
dissipative, and show that the nature of chaotic diffusion is reflected in the correlation of fluctuation
of the linear stability matrix for the equation of motion of the dynamical system whose phase
space variables behave as stochastic variables in the chaotic regime. Based on a Fokker–Planck
description of the system in the associated tangent space and an information entropy balance
equation, a relationship between chaotic diffusion and the thermodynamically inspired quantities
such as entropy production and entropy flux is established. The theoretical propositions have been
verified by numerical experiments.

1. Introduction

Several authors have enquired recently concerning the relationship between the phase space
dynamics of a dynamical system and thermodynamics [1–9]. The question acquires a particular
relevance for the dissipative system when the phase space volume contracts by virtue of
possessing the attractors and also when the system is nonlinear and comprises a few-degrees-
of-freedom. Thus even when these systems are not truly statistical in the thermodynamic
sense, it is possible that chaotic diffusion due to intrinsic deterministic chaos or stochasticity
plays a significant role in the dynamics. It is therefore worthwhile to enquire concerning
the relationship between chaotic diffusion in a dynamical system and the thermodynamically
inspired quantities such as entropy production and entropy flux. Our purpose in this paper is
to address this specific issue.

In what follows we shall be concerned with the nonlinear dynamical systems which are
chaotic and dissipative. We do not consider any stochasticity due to the thermal environment
or external non-thermal noise. ‘Deterministic stochasticity’ (i.e. chaos) has a purely dynamical
basis and its emergence in nonlinear dynamical systems is essentially due to loss of correlation
of initially nearby trajectories. This is reflected in the linear stability matrix or Jacobian
of the system [10]. When chaos has fully set in, the time dependence of this matrix can
be described as a stochastic process, since the phase space variables behave as stochastic
variables [11]. It has been shown that this fluctuation is amenable to a theoretical description
in terms of the theory of multiplicative noise [12]. Based on this consideration a number
of important results of non-equilibrium statistical mechanics, such as Kubo relations, the
fluctuation–decoherence relation, fluctuation–dissipation relation and exponential divergence
of quantum fluctuations have been realized in chaotic dynamics of a few-degrees-of-freedom
system [13–18]. In the present paper we make use of this stochastic description of chaotic
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dynamics to formulate a Fokker–Planck equation of the probability density function for the
relevant dynamical variables, the ‘stochasticity’ (i.e. chaoticity) being incorporated through the
fluctuations of the time-dependent linear stability matrix. Once the drift and chaotic diffusion
terms are appropriately identified the thermodynamic-like quantities can be derived with the
help of the suitable information entropy balance equation.

The paper is organized as follows. In section 2 we introduce a Fokker–Planck description
of the dynamical system and identify the chaotic drift and diffusion terms. This is followed by
setting up of an information entropy balance equation in section 3. We then look for the entropy
flux and entropy-production-like terms in the steady state. The shift of the stationary state due
to additional external forcing and the associated change in entropy production is considered
in section 4. We illustrate the theory in detail with the help of an example in section 5. The
paper is concluded in section 6.

2. A Fokker–Planck equation for dissipative chaotic dynamics

We are concerned here with a general N -degrees-of-freedom system whose Hamiltonian is
given by

H =
N∑
i=1

p2
i

2mi

+ V ({qi}, t) i = 1, . . . , N (1)

where {qi, pi} are the coordinate and momentum of the ith degrees-of-freedom, respectively,
which satisfy the generic form of the equations

q̇i = ∂H

∂pi

ṗi = −∂H

∂qi

. (2)

We now make the Hamiltonian system dissipative by introducing −γpi in the right-hand
side of the second of equations (2). For simplicity we assume γ to be the same for all the N

degrees of freedom. By invoking the symplectic structure of the Hamiltonian dynamics as

zi =
{
qi for i = 1, . . . , N

pi−N for i = N + 1, . . . , 2N

and defining I as

I =
[

0 E

−E −γE

]

where E is an N × N unit matrix, and 0 is an N × N null matrix, the equation of motion for
the dissipative system can be written as

żi =
2N∑
j=1

Iij
∂H

∂zj
. (3)

We now consider two nearby trajectories, zi, żi and zi + Xi , żi + Ẋi at the same time t in
a 2N -dimensional phase space. The time evolution of separation of these trajectories is then
determined by

Ẋi =
2N∑
j=1

Jij (t)Xj (4)
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in the tangent space or separation coordinate space Xi , where

Jij =
∑
k

Iik
∂2H

∂zk∂zj
. (5)

Therefore, the 2N × 2N linear stability matrix J assumes the following form:

J =
[

0 E

M(t) −γE

]
(6)

where M is an N × N matrix. Note that the time dependence of the stability matrix J (t) is
due to the second derivative ∂2H

∂zk∂zj
which is determined by the equation of motion (3). The

procedure for calculation of Xi and related quantities such as Lyapunov exponents is to solve
the trajectory equation (3) simultaneously with equation (4). Thus when the dissipative system
described by (3) is chaotic, J (t) becomes a (‘deterministically’) stochastic phase space due to
the fact that zi behave as stochastic phase space variables and the equation of motion (4) in the
tangent space can be interpreted as a stochastic equation [13–18].

In the next step we shall be concerned with a stochastic description of J (t) or M(t). For
convenience we split up M into two parts as

M = M0 + M1(t) (7)

where M0 is independent of variables {zi} and therefore behaves as a constant part and M1 is
determined by the variables {zi} for i = 1, . . . , 2N . M1 refers to the fluctuating part. We now
rewrite the equation of motion (4) in the tangent space as

Ẋ = JX = L ({Xi}, {zi}) (8)

where X and L are the vectors with 2N components. Corresponding to (7) L in (8) can be
split up again to yield

Ẋ = L0(X) + L1(X, {zi(t)})
or

Ẋi = Li
0({Xi}) + L1

i ({Xi}, {zi}) i = 1, . . . , 2N. (9)

Equation (4) indicates that equation (8) is linear in {Xi}. Equations (4)–(6) express the
fact that the first N components of L1 are zero and the last N components of L1 are the
functions of {Xi} for i = 1, . . . , N only. The fluctuation in L1

i is caused by the chaotic
variables {zi}. By defining ∇X as differentiation with respect to components of X, i.e. {Xi}
(explicitly Xi = �qi for i = 1, . . . , N and Xi = �pi for i = N + 1, . . . , 2N ) and since
L1

i = 0 for i = 1, . . . , N and L1
i = L1

i (X1, . . . , XN) for i = N + 1, . . . , 2N we have
∇X · L1 = ∑N

i=1(
∂

∂Xi
· 0) +

∑2N
i=N+1

∂
∂Xi

· L1
i (X1, . . . , XN) = 0. This allows us to write the

following relation (which will be used later on),

∇X · L1φ({Xi}) = L1 · ∇Xφ({Xi}) (10)

where φ({Xi}) is any function of {Xi}.
Note that equation (9) by virtue of (8) is a linear differential equation with multiplicative

‘noise’ due to {zi} determined by the equation of motion (3). This is the starting point of our
further analysis.

Equation (9) determines a stochastic process with some given initial conditions {Xi(0)}.
We now consider the motion of a representative point X in 2N -dimensional tangent space
(X1, . . . , X2N ) as governed by equation (9). The equation of continuity, which expresses the
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conservation of points determines the variation of the density function φ(X, t) in time as given
by

∂φ(X, t)

∂t
= −∇X · L(t)φ(X, t). (11)

Expressing A0 and A1 as

A0 = −∇X · L0 and A1 = −∇X · L1 (12)

we may rewrite the equation of continuity as

∂φ(X, t)

∂t
= [A0 + αA1(t)]φ(X, t). (13)

It is easy to recognize that while A0 denotes the constant part, A1 contains the multiplicative
fluctuations through the phase space variables of the dynamical system {zi(t)}. α is a parameter
introduced from outside to keep track of the order of fluctuations in the calculations. At the
end we put α = 1.

One of the main results for the linear equations of the form (13) with multiplicative noise
may now be in order [12]. The average equation of 〈φ〉 obeys [P(X, t) ≡ 〈φ〉],

Ṗ =
{
A0 + α〈A1〉 + α2

∫ ∞

0
dτ 〈〈A1(t) exp(τA0)A1(t − τ)〉〉 exp(−τA0)

}
P(X, t). (14)

The above result is based on second-order cumulant expansion and is valid when
fluctuations are small but rapid and the correlation time τc is short but finite, or more precisely

〈〈A1(t)A1(t
′)〉〉 = 0 for |t − t ′| > τc. (15)

We have, in general, 〈A1〉 �= 0. Here 〈〈· · ·〉〉 implies 〈〈ζiζj 〉〉 = 〈ζiζj 〉 − 〈ζi〉〈ζj 〉.
Equation (14) is exact in that limit τc → 0. Making use of relation (12) in (11) we obtain

∂P

∂t
=
{
−∇X · L0 − α〈∇X · L1〉 + α2

∫ ∞

0
dτ 〈〈∇X · L1(t) exp(−τ∇X · L0)

× ∇X · L1(t − τ)〉〉 exp(τ∇X · L0)
}
P. (16)

The above equation can be transformed into the following Fokker–Planck equation (α = 1)
for the probability density function P(X, t) (the details are given in the appendix):

∂P (X, t)

∂t
= −∇X · FP +

∑
i,j

Dij

∂2P

∂Xi∂Xj

(17)

where

F = L0 + 〈L1〉 + Q (18)

and Q is a 2N -dimensional vector whose components are defined by

Qj = −
∫ ∞

0
〈〈R′

j 〉〉 dτ det1(τ ) det2(τ ). (19)

Here the determinants det1, det2 and R′
j are given by

det1(τ ) =
∣∣∣∣dX−τ

dX

∣∣∣∣ det2(τ ) =
∣∣∣∣ dX

dX−τ

∣∣∣∣
R′

j =
∑
i

L1
i (X, t)

∂

∂Xi

∑
k

L1
k(X

−τ , t − τ)
∂Xj

∂X−τ
k

.

(20)
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It is easy to recognize F as an evolution operator. Because of the dissipative perturbation
we note that divF < 0.

The diffusion coefficient Dij in equation (17) is defined as

Dij =
∫ ∞

0

∑
k

〈〈
L1

i (X, t)L1
k(X

−τ , t − τ)
dXj

dX−τ
k

〉〉
dτ. (21)

We have followed van Kampen’s approach closely [12] to the generalized Fokker–Planck
equation (17). Before concluding this section several critical remarks regarding this derivation
need attention.

First, the process M1(t) determined by {zi} is obtained exactly by solving the equations
of motion (3) for the chaotic motion of the system. It is therefore necessary to emphasize that
we have not assumed any special property of noise, such as M1(t) is Gaussian or δ-correlated.
We reiterate Van Kampen’s emphasis in this approach.

Second, the only assumption made concerning the noise is that its correlation time τc is
short but finite compared with the coarse-grained timescale over which the average quantities
evolve. Or, in other words, the velocity changes should be small, smooth and uncorrelated after
short times. This assumption, however, puts a restriction on the applicability of the present
theory to a certain class of systems, for example, systems subjected to ‘hard’ collisions such
as billiards and also molecular systems in certain non-dissipative Hamiltonian systems such as
the standard map, for which the usual assumptions concerning the rapid decay of correlations
and fluctuations are not valid and entropy production does not occur. Special reference may
be made in this connection to the work of Zaslavsky and collaborators [19] to demonstrate that
in many real systems the decay of correlation exhibits a power-law dependence, distributions
admit infinite moments and the fluctuations become long lasting. Since the mathematical
difficulties in dealing with the finite arbitrary correlation time of noise in a chaotic system
is quite formidable, we confine ourselves in the present discussion to chaotic systems with a
short but finite noise correlation time.

Third, we take care of fluctuations up to second order which implies that the deterministic
noise is not too strong.

Equation (17) is the required Fokker–Planck equation in the tangent space {Xi}. However,
the important point is to note that the drift and diffusion terms are determined by the phase
space {zi} properties of the chaotic system and depend directly on the correlation function of
the fluctuations of the second derivatives of the Hamiltonian (5).

3. Information entropy balance: entropy production

We shall now consider the well known relation between the probability density functionP(X, t)

and the information entropy S as given by

S = −
∫

dXP(X, t) ln P(X, t). (22)

Note that in the above definition of entropy we use P(X, t), the probability distribution
function in the tangent space, since one is concerned here with the expansion of the phase
space in terms of a tangent space and dilation coefficients of the dynamical system for which
the expanding and contracting manifolds can be defined. On the other hand, it is worthwhile
to recall the dynamic entropy of a dynamical system (Kolmogorov entropy) defined in terms
of the properties of evolution in the tangent space. A remark on the connection between
entropy and expansion by Sinai [20] is noteworthy in this context; ‘It already seems clear
that positiveness of the entropy and presence of mixing is related to extreme instability of the



8336 B C Bag et al

motion of the system: trajectories emanating from the nearby points must, generally speaking,
diverge with exponential velocity. Thus entropy is characterized here by the speed of approach
of the asymptotic trajectories’ which is formalized by defining the expansion coefficient as a
logarithm of the relative increase under the flow of a volume element in the expanding manifold.
Our definition of information entropy (22) makes use of the tangent space description of the
systems in terms of a logarithm of the probability of expansion in the tangent space, keeping
in mind that − ln P is ‘a measure of unexpectedness of an event (the amount of information)
and the information entropy is a mean value of this unexpectedness for the entire system’ [21].
The definition (22) is therefore different from Kolmogorov entropy. We emphasize that even in
the absence of any direct formal connection between P(X, t) and the phase space distribution
function it is possible to use the distribution function P(X, t) defined in the tangent space
to have an explicit expression for an entropy-production-like quantity as a function of the
properties of phase space variables {zi} of the dynamical system (i.e. in terms of drift and
diffusion coefficients of the Fokker–Planck equation).

The above definition of an information entropy-like quantity allows us to have an evolution
equation for entropy. To this end we observe from equations (17) and (22) that [22, 23]

dS

dt
= −

∫
dX

[
−
∑
i

∂

∂Xi

(FiP ) +
∑
i

∑
j

∫
Dij

∂2P

∂Xi∂Xj

]
ln P. (23)

Note that the probability density function P(X, t) is defined in the tangent space {Xi}.
D and F as expressed in equations (21) and (18), respectively, are determined by the
correlation functions of fluctuations of the second derivative of the Hamiltonian of the
system. Equation (23) therefore suggests that the entropy-production-like term originating
from equation (23) is likely to bear the signature of the chaotic dynamics. The relation is
direct and general as is evident from the following equation (obtained after partial integration
of equation (23) with the natural boundary condition on P(X, t) that it vanishes as |X| → ∞
and assuming the X dependence of Dij to be weak (as a first approximation)):

dS

dt
=
∫

dXP∇X · F +
∑
i

∑
j

Dij

∫
1

P

∂P

∂Xi

∂P

∂Xj

dX. (24)

The first term in (24) has no definite sign, while the second term is positive definite because
of positive definiteness of Dij . Therefore, the second one can be identified [22] as the entropy
production

Sprod =
∑
i

∑
j

Dij

∫
1

Ps

∂Ps

∂Xi

∂Ps

∂Xj

dX (25)

in the steady state. The subscript s of Ps refers to steady state. It is evident from equation (24)
that

Sflux =
∫

dX Ps(X) ∇X · F = ∇X · F
Sprod = −Sflux.

(26)

Note that since the chaotic system is dissipative ∇X · F is negative (see equation (18)).
It is thus evident that the relations (25) and (26) illustrate the dynamical origin of an

entropy-production-like quantity in a chaotic dissipative system. The dynamical signature
is manifested through the drift term F and the chaotic diffusion terms in Dij . It must be
emphasized that the notion of diffusion has nothing to do with any external reservoir. Rather
it pertains to intrinsic diffusion in phase space of the chaotic system itself.
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4. The chaotic system driven by an external force

We shall now examine the entropy production when the dissipative chaotic system is thrown
away from the steady state due to an additional weak applied force. To this end we consider
the drift F1 due to an external force so that the total drift F now has two contributions:

F(X) = F0(X) + hF1(X). (27)

When h = 0, P = Ps . The deviation of P from Ps in the presence of non-zero small h
can be explicitly taken into account once we make use of the identity for the diffusion term
[22]

∂2P

∂Xi∂Xj

= ∂

∂Xi

[
P

∂ ln Ps

∂Xj

]
+

∂

∂Xi

[
Ps

∂

∂Xj

P

Ps

]
. (28)

When P = Ps the second term in (28) vanishes. In the presence of additional forcing
equation (17) becomes

∂P

∂t
= −∇X · ψP − h∇X · F1P +

∑
i

∑
j

Dij

∂

∂Xi

(
Ps

∂

∂Xj

P

Ps

)
(29)

where ψ is defined as

ψ = F0 −
∑
j

Dij

∂ ln Ps

∂Xj

. (30)

Here we have assumed for simplicity that Dij is not affected by the additional forcing. The
leading-order influence is taken into account by the additional drift term in equation (29).

Under the steady-state condition (P = Ps) and h = 0, the second and the third terms in
(29) vanish yielding

∇X · ψPs = 0. (31)

It is immediately apparent that ψPs refers to a current J , where J = ψPs . The steady-state
condition therefore reduces to an equilibrium condition (J = 0) if

ψ = 0. (32)

(In section 5 we shall consider an explicit example to show that ψ = 0.) This suggests a
formal relation between F0i and Dij as

F0i =
∑
j

Dij

∂ ln Ps

∂Xj

(33)

where Ps may now be referred to as the equilibrium density function in separation coordinate
space. F0 contains a dissipation constant γ and the diffusion matrix Dij is a function of the
correlation function of fluctuations of the second derivative of the Hamiltonian.

To consider the information entropy balance equation in the presence of external forcing
we first differentiate equation (22) with respect to time and use equation (29) to obtain

dS

dt
= − d

dt

∫
dXP ln Ps −

∫
dX ln

P

Ps

[
−∇X · ψP − h∇X · F1P

+
∑
i

∑
j

Dij

∂

∂Xi

(
Ps

∂

∂Xj

P

Ps

)]
. (34)
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It is apparent that as P deviates from Ps , P/Ps differs from unity and the entire second
integral within the parentheses [22] is of second order. Note that ln Ps in the first integral
in equation (34) is a constant of motion and the integral denotes its average. The first term
vanishes because it is of higher order as it involves P 2 and others. (Moreover, since in the
discussion that follows we consider the steady state, this term does not contribute to the
subsequent calculations.) To compute the contribution �S to the entropy balance due to the
external forcing only we perform integration of the second, third and fourth terms by parts.
We thus obtain,

d�S

dt
= h2

∫
dX δP∇X · F1 + h2

∫
dX

(∑
i

F1i
∂ ln Ps

∂Xi

)
δP

+
∑
i

∑
j

Dij

∫
dXP

(
∂

∂Xi

ln
P

Ps

)(
∂

∂Xj

ln
P

Ps

)
(35)

where we have put hδP = P − Ps . In the new steady state (in the presence of h �= 0), the
entropy-production and the flux-like terms balance each other as follows:

�Sprod = −�Sflux (36)

with

�Sprod =
∑
i,j

Dij

∫
dXP

(
∂

∂Xi

ln
P

PS

)(
∂

∂Xj

ln
P

PS

)
(37)

and

�Sflux = h2
∫

dX δP∇X · F1 + h2
∫

dX

(∑
i

F1i
∂ ln PS

∂Xi

)
δP . (38)

In the following section we shall work out a specific example to provide explicit
expressions for the entropy production and some related quantities due to external forcing.

5. Applications

5.1. Entropy production in the steady state

To illustrate the theory developed above, we now choose a driven double-well oscillator system
with the Hamiltonian

H = 1
2p

2
1 + aq4

1 − bq2
1 + εq1 cos.t (39)

where p1 and q1 are the momentum and position variables of the system. a and b are the
constants characterizing the potential. ε includes the effect of the coupling constant and
the driving strength of the external field with frequency .. This model (39) has been used
extensively in recent years for the study of chaotic dynamics [13–15, 24].

The dissipative equations of motion for the tangent space variables X1 and X2

corresponding to q1 and p1 (equation (8)) read as follows:

d

dt

[
X1

X2

]
= J

[
X1

X2

] {
�q1 = X1

�p1 = X2

}
(40)

where J as expressed in our earlier notation

z1 = q1 z2 = p1
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is given by

J =
(

0 E

−E −γE

)



∂2H

∂z1∂z1

∂2H

∂z1∂z2

∂2H

∂z2∂z1

∂2H

∂z2∂z2


.

Therefore, J reduces to(
0 1

ζ(t) + 2b −γ

)

where ζ(t) = −12az2
1. Thus we have

M0 = 2b M1 = ζ(t).

Equation (40) is thus rewritten as

d

dt

(
X1

X2

)
= L0 + L1 (41)

with

L0 =
(

X2

2bX1 − γX2

)
and L1 =

(
0

ζ(t)X1

)

where L0 and L1 are the constant and the fluctuating parts, respectively. The fluctuations in L1,
i.e. in ζ(t), are due to stochasticity of the following chaotic dissipative dynamical equations
of motion:

ż1 = z2

ż2 = −az3
1 + 2bz1 − ε cos.t − γ z2.

(42)

Now for the constant part and the fluctuating part we write

L01 = X2 L02 = 2bX1 − γX2

L11 = 0 L12 = ζ(t)X1.

We may then apply the result of equation (A5).
The mapping X → Xt is found by solving the ‘unperturbed’ equations

Ẋ1 = X2

Ẋ2 = G2 − γX2.

Comparison with equation (A7) shows that G2 (= 2bX1) is free from X2.
As a short-time approximation we consider the variation of X1 and X2 during τc:

X−τ
1 = −τX2 + X1 = Ḡ1(X1, X2)

X−τ
2 = −τG2 + eγ τX2 = Ḡ2(X1, X2).

(43)

So the g-matrix of equation (A15) becomes

g =
(

1 τe−γ τ

2bτe−γ τ e−γ τ

)
. (44)
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The vector R from equation (A15) can then be identified as

R =
(

ζ(t − τ)(X1 − τX2)g12

ζ(t − τ)(X1 − τX2)g22

)
=
(

ζ(t − τ)X1τe−γ τ

ζ(t − τ)(X1 − τX2)e−γ τ

)
(45)

(neglecting the terms of O(τ 2)).
Similarly, the vector R′ is given by

R′ =
(

0
−ζ(t − τ)τe−γ τX1ζ(t)

)
. (46)

From equations (43) and (44) we have

det1(τ ) det2(τ ) � 1. (47)

Then the vector Q can be written as

Q =




0

X1

∫ ∞

0
〈〈ζ(t)ζ(t − τ)〉〉τe−γ τ dτ


. (48)

Now the diffusion matrix D can be constructed as

D =
(

0 0
D21 D22

)
(49)

where

D21 = X2
1(0)

∫ ∞

0
〈〈ζ(t)ζ(t − τ)〉〉τe−γ τ dτ

and

D22 = X2
1(0)

∫ ∞

0
〈〈ζ(t)ζ(t − τ)〉〉e−γ τ dτ − X1(0)X2(0)

∫ ∞

0
〈〈ζ(t)ζ(t − τ)〉〉τe−γ τ dτ.

It is important to mention that the assumption of a weak X dependence of the diffusion
coefficient (by freezing its time dependence) is permitted as a first approximation within the
perview of the present second-order theory for which the strength of noise is not too large.
We also emphasize that for an actual theoretical estimate of the entropy production in terms
of the formulae (26) or (58), an explicit evaluation of the diffusion coefficients is not required
(see the next section). A straightforward calculation of drift is sufficient for the purpose. This
point will be clarified in greater detail in section 5.2.

Then the Fokker–Planck equation (17) for the dissipative driven double-well oscillator
assumes the following form:

∂P

∂t
= −X2

∂P

∂X1
− ω2X1

∂P

∂X2
+ γ

∂

∂X2
(X2P) + D21

∂2P

∂X2∂X1
+ D22

∂2P

∂X2
2

(50)

where

ω2 = 2b + c + c2

with

c2 =
∫ ∞

0
〈〈ζ(t)ζ(t − τ)〉〉τe−γ τ dτ

c = 〈ζ 〉.
(51)
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The similarity of equation (50) to a generalized Kramers’ equation cannot be overlooked. This
suggests a clear interplay of chaotic diffusive motion and dissipation in the dynamics.

We now let

U = asX1 + X2 (52)

where as is a constant to be determined.
Then under the steady-state condition, equation (50) reduces to the following form:

∂

∂U
(λsU)Ps + Ds

∂2Ps

∂U 2
= 0 (53)

where

Ds = D22 + asD21

and

λsU = −asX2 − ω2X1 + γX2.

Here λs is again a constant to be determined. Putting (52) in λsU as given above and comparing
the coefficients of X1 and X2 we obtain

λsas = −ω2 and λs = −as + γ.

The physically allowed solutions for as and λs are as follows:

as = γ −
√
γ 2 + 4ω2

2
and λs = γ +

√
γ 2 + 4ω2

2
. (54)

The stationary solution of (53) Ps is given by

Ps = Ne−λsU
2/2Ds . (55)

Here N is the normalization constant. By virtue of (55) ψ corresponding to equation (30) is
therefore

ψ = λsU − Ds

∂ ln Ps

∂U
= 0. (56)

Since ψPs defines a current, Ps defines a zero-current situation or an equilibrium condition.
The equilibrium solutionPs from (55) can now be used to calculate the steady-state entropy

production as given by equation (25). We thus have

Sprod = Ds

∫ ∞

−∞

1

Ps

(
∂Ps

∂U

)2

dU. (57)

Explicit evaluation shows

Sprod = λs (58)

where λs is given by equation (54).
The above result demonstrates a rather straightforward connection between the entropy-

production-like quantity of a chaotic system and the dynamics through the dissipation constant
γ , parameters of the Hamiltonian and correlation of fluctuations of the second derivatives of
the Hamiltonian in the steady state. It is important to note that since one is concerned here
with a few-degrees-of-freedom system with no explicit reservoir, temperature does not appear
in the expression for the entropy-production-like term (58). The entropy production in a truly
thermodynamic system and in the present case are therefore distinct.
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Figure 1. A plot of the numerically calculated stationary distribution function Ps(X1) as a function
of X1 for the set of parameter values described in section 5.

5.2. Numerical verifications

To verify the above theoretical analysis in terms of numerical experiments we now concentrate
on the following two points. First, it is necessary to establish numerically that the dynamical
system reaches a steady state, i.e. the probability density function P({Xi}, t) attains a steady-
state distribution Ps({Xi}) in the long-time limit. Second, the entropy production in the steady
state calculated by formula (58) needs to be verified numerically. To address the first issue we
now proceed as follows.

The dissipative chaotic dynamics corresponding to the model Hamiltonian (39) is governed
by equations (40) and (42). We choose the following values of the parameters [24]: a = 0.5,
b = 10, ω = 6.07 and γ = 0.001. The coupling-cum-field strength ε is varied from set
to set. We fix the initial condition z1(0) = −3.5, z2(0) = 0 which ensures strong global
chaos [24]. To determine the steady-state distribution function, say, Ps(X1), where X1 = �q

(equation (40)) from the dynamical point of view we first define d0 as the separation of the two
initially nearby trajectories and d(t) as the corresponding separation at time t . To express d(t)
we write d(t) = [∑N

i (Xi)
2 +

∑2N
i=N+1(Xi)

2
]1/2

. d(t) is determined by solving equations (40)
and (42) numerically, simultaneously for the initial conditions of z1 and z2 corresponding to
equation (42). To follow the evolution of X1 numerically in time, i.e. in going from the j th to

the (j + 1)th iteration step, say, X1 has to be initialized as X
j0
1 = X

j

1
dj

d0. (The time evolution of
the other components of X can be followed similarly.) This initialization implies that at each
step, iteration starts with the same magnitude of d0 but the direction of d0 for step j +1 is that of
d(t) for the j th step (considered in terms of the ratio X

j

1/dj ). For a more pictorial illustration
we refer to figure 1 of [25]. The j th iteration term means t = jT (j = 1, 2, . . . ,∞), where
T is the characteristic time which corresponds to the shortest ensemble averaged period of the
nonlinear dynamical system.
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Having obtained the time series inX1 (it may be noted that the series inXi are also required
for calculation of the largest Lyapunov exponent as defined by

λ = lim
n→∞
d0→0

1

nT

n∑
j=1

ln
dj

d0

for the chaotic system) the stationary probability density function Ps(X1) is computed as
follows: the X1-axis ranging from −2 to +2 is divided into small intervals �X1 of size 0.025.
The time series in X1 is computed over the time intervals of 1000–10 000 times the time period
T . For each time interval �X1 a counter is maintained and is initially set to zero before the
simulation is started. The respective counter is incremented whenever X1 falls within the
given interval. Finally, the steady-state probability distribution function Ps(X1) is obtained by
normalizing the counts. The result is shown in figure 1 for ε = 10. Our numerical analysis
shows that the distribution function attains stationarity at around t = 1000T , beyond which
no perceptible change in the distribution is obtained.

We now turn to the second issue. In what follows we shall be concerned with steady-
state entropy production (58) and its numerical verification. This quantity can be calculated
in two different ways. First, it may be noted that the determination of Sprod (equation (57))
rests on two quantities defined in the tangent space; the steady-state probability distribution
function Ps(U) and the diffusion coefficient Ds in U -space. Once the procedure for calculation
of the distribution function as illustrated above is known from the time series in X1 or X2

the evaluation of Ps(U) is quite straightforward since U is expressed as U = asX1 + X2

according to (52). Here as is given by (54) with ω2 = 2b + c + c2 and the average c and the
integral over the correlation function, c2 are as defined in (51). To calculate the correlation
function 〈〈ζ(t)ζ(t − τ)〉〉 and the average 〈ζ(t)〉 it is necessary to determine long time series in
ζ(t) (ζ(t) = −12az2

1) by solving numerically the classical equation of motion (42) in phase
space followed by averaging over the time series. For further details of numerical analysis
of correlation functions we refer to the earlier work [15–17]. The diffusion coefficient Ds

can be determined numerically from the time series in U . Knowing Ps(U) and Ds , one can
make use of formula (57) to obtain the entropy production in the steady state. Sprod is thus
calculated numerically. The second procedure of calculation of Sprod is the direct theoretical
evaluation of λs from the expression (54). Since the value of λs again rests on ω2 and γ ,
and the dependence of ω2 on the averages and the correlation functions are already known
from the numerical analysis of phase space, λs can be calculated in the usual way. In figure 2
we compare the values of steady-state entropy production thus obtained by the two different
methods for several values of coupling-cum-field strength ε. Here it should be noted that the
curve connecting the squares (i.e. the theoretically calculated entropy production in the steady
state) corresponds to the negative of the entropy flux (Sflux) since for the given exampleSflux inU

space is −λs (− ∫
λsPs(U) dU , from equation (26)) for the normalized probability distribution

function PS(U). Thus figure 2 is a numerical proof of Sprod = −Sflux. The agreement is found
to be quite satisfactory. We therefore conclude that at least for the model studied here and for
the similar class of models the correspondence between the formulae of steady-state entropy
production and the numerical computation is fairly general.

5.3. Entropy production in presence of weak forcing

We now introduce an additional weak forcing in the dynamics. This is achieved by subjecting
the dissipative chaotic system to a weak magnetic field ( �B) through a velocity-(�v) dependent
force term e

cl
�v× �B, where e and cl are the electric charge and the velocity of light, respectively.

For simplicity we apply the constant field Bz which is perpendicular to the q1-direction (see
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Figure 2. The steady entropy production calculated numerically (circle) and theoretically using
equation (58) (square) for different values of the driven field strength ε for the model described in
section 5.

equation (39)). In the presence of this force field the motion of the particle will not be restricted
to Bz and q1 only. We have to consider the other direction q2 which is perpendicular to both
q1 and Bz.

To make the notation consistent with equation (8) we would now like to let X1, X2, X3

and X4 correspond to �q1,�q2,�p1 and �p2, respectively.
The relevant equations of motion are therefore as follows:

Ẋ1 = X3

Ẋ2 = X4

Ẋ3 = 2bX1 − γX3 + ζ(t)X1 + h
eX4

cl
Bz

Ẋ4 = −hγX4 − h
eX3

cl
Bz.

(59)

Here e/cl is the ratio of electric charge to the velocity of light used to give the equation the
appropriate dimensions.

Then the non-equilibrium situation (due to additional forcing, h �= 0) corresponding to
equation (59) is governed by

∂P

∂t
= −h

∂

∂X2
(X4P) + h

∂

∂X4
(γX4)P − hB ′

z

∂

∂X3
(X4P)

+hB ′
z

∂

∂X4
(X4P) + Ds

∂

∂U

(
Ps

∂

∂U

P

Ps

)
(60)

where

B ′
z = e

cl
Bz

Ds = D22 + D21as
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or more explicitly,

∂P

∂t
= −X3

∂P

∂X1
− ω2X1

∂P

∂X3
+ γ

∂

∂X3
(X3P) + hγ

∂

∂X4
(X4P) − hX4

∂P

∂X2

−hB ′
z

∂

∂X3
(X4P) + hB ′

z

∂

∂X4
(X3P) + D21

∂2P

∂X3∂X1
+ D22

∂2P

∂X2
3

. (61)

Proceeding as before we make use of the transformation of variables using

U ′ = a′X1 + b′X2 + c′X3 + X4 (62)

so that equation (61) becomes

∂P

∂t
= ∂

∂U ′ (λ
′U ′P) + D ∂2P

∂U ′2 (63)

where

D = D33c
′2 + D31a

′c′. (64)

D33 and D31 in four dimensions correspond to D22 and D21 in two dimensions, respectively
and

λ′U ′ = −a′X3 − c′ω2X1 + γX3c
′ + hγX4 − hB ′

zX4c
′ + hB ′

zX3 − hb′X4. (65)

Using (62) in (65) and comparing the coefficients of Xi we obtain

b′ = 0 a′ = c′γ + hB ′
z − λ′c′

c′ = (hγ − λ′)/hB ′
z

(66)

where λ′ is a solution of the cubic algebraic equation

λ′3 + λ′(hγ 2 + h2B ′
z

2 − ω2) − λ′2γ (1 + h) + ω2γ h = 0. (67)

We now seek a perturbative solution of the algebraic equation (67) which is given by (h
as a small parameter)

λ′ = λ′
0 +

h
(
λ′2

0γ − ω2γ − λ′
0γ

2 − λ′
0hB

′2
z

)
3λ′2

0 − 4λ′
0γ + hγ 2 + h2B ′2

z − ω2
(68)

where λ′
0 is the solution of (67) for h = 0;

λ′
0 = γ +

√
γ 2 + 4ω2

2
. (69)

This is identical to λs (equation (54)). Therefore, by virtue of equations (66)–(69) all the
constants in (62), i.e. a′, b′, c′ are now known. The stationary solution of (63) is now given by

P ′
s = N ′e−λ′U ′2/2D (70)

where N ′ is the normalization constant.
We are now in a position to calculate the steady-state entropy flux �Sflux due to external

forcing (h �= 0) from equation (38)

�Sflux = h2
∫

dX δP∇ · F1 + h2
∫

dX

(∑
i

F1i
d ln Ps

dXi

)
δP (71)
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where the components of F1 can be identified as

F11 = 0 F13 = B ′
zX4

F12 = X4 F14 = −B ′
zX3 − γX4 (72)

∇X · F1 = −γ,

and hδP = P ′
s − Ps denotes the deviation from the initial equilibrium state due to external

forcing. For normalized probability functions P ′
s and Ps the first integral in (71) vanishes.

Since Ps is given by (55) with U as defined in (52), the expression for (71) reduces to

�Sprod = −�Sflux

= hB ′
z

λs

Ds

∫
X4 (asX1 + X3) dXP ′

s . (73)

We now use the following transformations of variables:

u′ = a′X1 + c′X3 + X4 (since b′ = 0)

v′ = X3

w′ = X4

dX1 dX3 dX4 = a′ du′ dv′ dw′

(74)

to calculate the integrals,∫
X3X4 dXP ′

s = D
2λ′|c′| and

∫
X1X4 dXP ′

s = D
2λ′a′ (75)

which yield

�Sprod = −�Sflux

= hB ′
z

λs

Ds

D
2λ′

[
1

|c′| +
|as |
a′

]
. (76)

For numerical verification of the above theoretical result (76) one can calculate entropy
production (�Sprod) numerically in the steady state in the presence of weak forcing from
equation (37) as in the previous subsection. Equation (37) for the present example reduces to
the following form in the steady state:

�Sprod = D33

∫ ∫ ∫
P ′

s

(
∂

∂X3
ln

P ′
s

Ps

)2

dX1 dX3 dX4

+D31

∫ ∫ ∫
P ′

s

(
∂

∂X3
ln

P ′
s

Ps

)(
∂

∂X1
ln

P ′
s

Ps

)
dX1 dX3 dX4. (77)

To calculate �Sprod numerically, D33,D31 and Ps can be determined by directly using the
procedure mentioned in subsection 5.2 and by solving equations (41) and (42) simultaneously.
Similarly, one can calculate P ′

s from equations (42) and (59). Finally, making use of all of these
quantities in equation (77) �Sprod can be obtained. Thus the numerically evaluated �Sprod

should correspond to the results of equation (76) since our numerical verification in figure 2
shows good agreement between numerical and theoretical results, D33,D31 being very close
to D22 and D21, respectively, since h is very small.

In the limit where h and γ are small the above expression (76) can be simplified further.
To this end we first note that

|as | ∼ ω λs ∼ ω λ′ ∼ λ′
0 ∼ ω

c′ = a′

ω
and a′ = ωh

γ
B ′

z.
(78)
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This reduces D further as follows;

D = D33c
′2 + D31a

′c′

� a′2

ω2
(D33 − D31ω). (79)

Thus we have
D
Ds

= a′2

ω2
. (80)

Making use of (78)–(80), expression (76) can be approximated as

�Sprod = hB ′
z

a′2

ω2

1

2

(ω

a′ +
ω

a′
)

= h2e2

c2
l γ

B2
z . (81)

This expression is due to the average of the work per unit time of the external force Bz

acting on the chaotic system. Note that the quadratic dependence on the magnetic field Bz

in equation (81) is characteristic of an expression for entropy production in the steady state.
Since the system is not thermostated this is independent of the temperature. Although the
leading-order expression (81) is apparently free from diffusion coefficients, a close look into
the more exact expression (76) reveals that their influence is quite significant in the higher
order.

6. Conclusions

Ever since the development of the theory of chaos, the dynamical variables in the strong
chaotic regime have been interpreted as stochastic variables. One of the earliest well known
examples in this connection was set by demonstrating [11] the linear divergence of mean-square
momentum in time in a standard map, mimicking the Brownian motion. In the present paper
we have tried to relate this chaotic diffusion to thermodynamic-like quantities by establishing a
generalized Fokker–Planck equation pertaining to the tangent space. The explicit dependence
of drift and diffusion terms on the dynamical characteristics of the phase space of the system
is demonstrated.

The main conclusions of our study are the following.

(a) We analyse the nature of chaotic diffusion in terms of the properties of the phase space
of chaotic systems. The drift and diffusion terms are dependent on the correlation of
fluctuations of the linear stability matrix of the equation of motion. Since the latter is the
key point for understanding the stability of motion in a dynamical system, we emphasize
that the thermodynamic-like quantities as discussed here have a deeper root in the intrinsic
nature of motion of a few-degrees-of-freedom system.

(b) We identify the information entropy flux and production-like terms in the steady state
which explicitly reveal their connection to dynamics through drift and diffusion terms, in
the presence and absence of the external force field.

(c) The connection between the thermodynamically inspired quantities and chaos are fairly
general for the N -degrees-of-freedom systems.

The theory developed in this paper is based on the derivation of the Fokker–Planck equation
for chaotic systems pertaining to the processes with correlation time which is short but finite
(i.e. for the systems with hard chaos). The suitable generalization of the approach to more
general cases, where one encounters long correlation times is worth further investigation in
this direction.
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Appendix. The derivation of the Fokker–Planck equation

We first note that the operator exp(−τ∇X · L0) provides the solution of the equation
(equation (13), α = 0)

∂f (X, t)

∂t
= −∇X · L0f (X, t) (A1)

where f signifies the ‘unperturbed’ part of P , which can be found explicitly in terms of
characteristic curves. The equation

Ẋ = L0(X) (A2)

determines for a fixed t a mapping from X(τ = 0) to X(τ), i.e. X → Xτ with inverse
(Xτ )−τ = X. The solution of (A1) is

f (X, t) = f (X−t , 0)

∣∣∣∣dX−t

dX

∣∣∣∣ = exp [−t∇X · F0] f (X, 0) (A3)

and
∣∣∣ d(X−t )

d(X)

∣∣∣ is a Jacobian determinant. The effect of exp(−t∇X · L0) on f (X) is

exp(−t∇X · L0)f (X, 0) = f (X−t , 0)

∣∣∣∣dX−t

dX

∣∣∣∣. (A4)

In equation (16) this simplification yields

∂P

∂t
=
{
−∇X · L0 − α〈∇X · L1〉 + α2

∫ ∞

0
dτ

∣∣∣∣dX−τ

dX

∣∣∣∣
×〈〈∇X · L1(X, t)∇X−τ · L1(x−τ , t − τ)〉〉

∣∣∣∣ dX

dX−τ

∣∣∣∣
}
P. (A5)

Now to express the Jacobian, X−τ and ∇X−τ in terms of ∇X and X we solve equation (A2)
for a short time (this is consistent with the assumption that the fluctuations are rapid [12]).
Using equations (4)–(6) we may rewrite the ‘unperturbed’ equation (A2) as

d

dt




X1

...

XN


 =




XN+1

...

X2N


 (A6)

and

d

dt




XN+1

...

X2N


 = −γ




XN+1

...

X2N


 +




GN+1(X)

...

G2N(X)


. (A7)

Here GN+1(X) · · ·G2N(X) are functions of {Xi} with i = 1, . . . , N only. This allows us to
rewrite the solution of (A6) and (A7) as


X−τ

1
...

X−τ
N


 = −τ




XN+1

...

X2N


 +




X1

...

XN


 =




Ḡ1(X)

...

ḠN(X)


 (A8)
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and 


X−τ
N+1
...

X−τ
2N


 = eγ τ




XN+1

...

X2N


 − τ




GN+1(X)

...

G2N(X)


 =




ḠN+1(X)

...

Ḡ2N(X)


. (A9)

Here the terms of O(τ 2) are neglected. Since the vector X−τ is expressible as a function of X
we write

X−τ = Ḡ(X) (A10)

and the following simplification holds good:

L1(X−τ , t − τ) · ∇X−τ = L1(Ḡ(X), t − τ) · ∇X−τ

=
∑
k

L1
k(Ḡ(X), t − τ)

∂

∂X−τ
k

=
∑
j

∑
k

L1
k(Ḡ(X), t − τ)gjk

∂

∂Xj

j, k = 1, . . . , 2N (A11)

where

gjk = ∂Xj

∂X−τ
k

. (A12)

In view of equations (A8) and (A9) we note:

if j = k then gjk = 1 k = 1, . . . , N

= e−γ τ k = N + 1, . . . , 2N

if j �= k then gjk ∝ −τe−γ τ

or 0.

Thus gjk is a function of τ only.
Let

Rj =
∑
k

L1
k(Ḡ(X), t − τ)gjk. (A13)

From equations (8), (9) and (A10) we write

L1
i (X

−τ , t − τ) = L1
i (Ḡ(X), t − τ) = 0 for i = 1, . . . , N. (A14)

So the conditions (A13), (A14) and (A8) imply that

Rj(X, t − τ) = Rj(X1, . . . , XN, t − τ) for j = 1, . . . , N

Rj (X, t − τ) = Rj(X1, . . . , X2N, t − τ) for j = N + 1, . . . , 2N.
(A15)

We next carry out the following simplifications of the α2-term in equation (A5). We make use
of relation (10) to obtain

L1(X, t) · ∇
∑
j

Rj

∂

∂Xj

P (X, t) =
∑
i

L1
i (X, t)

∂

∂Xi

∑
j

Rj

∂

∂Xj

P (X, t)

=
∑
i,j

L1
i (X, t)Rj

∂2

∂Xi∂Xj

P (X, t) +
∑
j

R′
j

∂

∂Xj

P (X, t) (A16)
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where

R′
j =

∑
i

L1
i (X, t)

∂

∂Xi

Rj . (A17)

Conditions (A14) and (A15) imply that

R′
j = 0 for j = 1, . . . , N

R′
j = R′

j (X1, . . . , XN, t − τ) �= 0 for j = N + 1, . . . , 2N.
(A18)

By (A18) one has

R′ · ∇XP (X, t) = ∇X · R′P(X, t). (A19)

Making use of equations (10), (A11), (A16) and (A19) in equation (A5) we obtain the
Fokker–Planck equation (17).
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